Esta questão já tem uma resposta aqui: Para um modelo ARIMA (0,0,1), entendo que R segue a equação: xt mu e (t) thetae (t-1) (Por favor, corrija-me se eu estiver errado) I Assumir e (t-1) é o mesmo que o residual da última observação. Mas, como é e (t) calculado, por exemplo, aqui estão as quatro primeiras observações em dados de amostra: 526 658 624 611 Estes são os parâmetros que o modelo Arima (0,0,1) deu: interceptação 246.1848 ma1 0.9893 E o primeiro valor que R ajuste usando o modelo é: 327.0773 Como faço para obter o segundo valor que usei: 246.1848 (0.9893 (526-327.0773)) 442.979 Mas o 2º valor ajustado dado por R é. 434.7928 Eu suponho que a diferença é por causa do termo e (t). Mas eu não sei como calcular o termo e (t). Pediu 28 de julho às 16:12 marcado como duplicado por Glenb 9830. Nick Stauner. Whuber 9830 jul 29 14 at 1:24 Esta pergunta foi feita antes e já tem uma resposta. Se essas respostas não respondem totalmente a sua pergunta, faça uma nova pergunta. Você poderia obter os valores ajustados como previsões de um passo usando o algoritmo de inovações. Veja, por exemplo, a proposição 5.5.2 em Brockwell e Davis downloable da internet, encontrei esses slides. É muito mais fácil obter os valores ajustados como a diferença entre os valores observados e os resíduos. Neste caso, sua pergunta se resume a obter os resíduos. Vamos levar esta série gerada como um processo MA (1): Os resíduos, chapéu t, podem ser obtidos como um filtro recursivo: Por exemplo, podemos obter o residual no ponto 140 como valor observado em t140 menos a média estimada menos Vezes o tempo anterior, t139): o filtro de função pode ser usado para fazer esses cálculos: você pode ver que o resultado está muito próximo dos resíduos retornados pelos resíduos. A diferença nos primeiros resíduos é provavelmente devido a alguma inicialização que eu possa ter omitido. Os valores ajustados são apenas os valores observados menos os resíduos: na prática, você deve usar as funções residuais e ajustadas, mas, para fins pedagógicos, você pode tentar a equação recursiva usada acima. Você pode começar fazendo alguns exemplos à mão como mostrado acima. Eu recomendo que você leia também a documentação do filtro de função e compare alguns dos seus cálculos com ele. Uma vez que você entenda as operações envolvidas na computação dos resíduos e valores ajustados, você poderá fazer um uso eficiente das funções mais práticas residuais e instaladas. Você pode encontrar algumas outras informações relacionadas à sua pergunta nesta postagem. Esta é uma questão básica sobre os modelos Box-Jenkins MA. Como eu entendi, um modelo de MA é basicamente uma regressão linear dos valores de séries temporais Y em relação aos termos de erro anteriores e. E. Ou seja, a observação Y é primeiro regredida contra os valores anteriores de Y. Y e, em seguida, um ou mais valores de Y-hat são usados como os termos de erro para o modelo MA. Mas como os termos de erro são calculados em um modelo ARIMA (0, 0, 2) Se o modelo MA é usado sem uma parte autorregressiva e, portanto, sem valor estimado, como posso ter um termo de erro solicitado 7 de abril 12 às 12:48 Estimativa do Modelo MA: Vamos assumir uma série com 100 pontos de tempo, e dizer que isso é caracterizado pelo modelo MA (1) sem intercepção. Então o modelo é dado por ytvarepsilont-thetavarepsilon, quad t1,2, cdots, 100quad (1) O termo de erro aqui não é observado. Então, para obter isso, Box et al. Time Series Analysis: Forecasting and Control (3ª edição). Página 228. Sugerem que o termo de erro é calculado de forma recursiva, então o termo de erro para t1 é, varepsilon y thetavarepsilon. Agora, não podemos calcular isso sem saber o valor de theta. Portanto, para obter isso, precisamos calcular a estimativa Inicial ou Preliminar do modelo, consulte Box et al. Do referido livro, seção 6.3.2 página 202 indicar que, foi mostrado que as primeiras q autocorrelações do processo MA (q) não são zero e podem ser escritas em termos dos parâmetros do modelo como rhokdisplaystylefrac theta1theta theta2theta cdotstheta thetaq quad K1,2, cdots, q A expressão acima forrho1, rho2cdots, rhoq em termos theta1, theta2, cdots, thetaq, fornece q equações em q desconhecidas. As estimativas preliminares das thetas podem ser obtidas substituindo a estimativa rk por rhok na equação acima Observe que rk é a autocorrelação estimada. Há mais discussões na Seção 6.3 - Estimativas iniciais para os parâmetros. Leia sobre isso. Agora, supondo que obtenhamos a estimativa inicial theta0.5. Então, varepsilon y 0.5varepsilon Agora, outro problema é que não temos valor para o varepsilon0 porque t começa em 1 e, portanto, não podemos calcular o varepsilon1. Felizmente, existem dois métodos que dois obtêm isso, Probabilidade condicional de probabilidade incondicional de acordo com a Box et al. Seção 7.1.3 página 227. Os valores de varepsilon0 podem ser substituídos por zero como uma aproximação se n for moderado ou grande, esse método é a Probabilidade Condicional. Caso contrário, é usada a Probabilidade incondicional, em que o valor de varepsilon0 é obtido por antecipação, Box et al. Recomendar este método. Leia mais sobre a previsão de atraso na Seção 7.1.4 página 231. Depois de obter as estimativas iniciais e o valor do varepsilon0, então, finalmente, podemos prosseguir com o cálculo recursivo do termo de erro. Então, o estágio final é estimar o parâmetro do modelo (1), lembre-se que esta não é mais a estimativa preliminar. Ao estimar o parâmetro theta, uso o procedimento de Avaliação Não-Linear, particularmente o algoritmo Levenberg-Marquardt, já que os modelos MA não são lineares em seu parâmetro. Dados de mobilização removem variações aleatórias e mostram tendências e componentes cíclicos. Inerente na coleta de dados obtidos ao longo do tempo é algum Forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é o alisamento. Esta técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de suavização Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Em primeiro lugar, investigaremos alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico entrega em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média calculada ou a média dos dados 10. O gerente decide usar isso como a estimativa de despesas de um fornecedor típico. Isto é uma estimativa boa ou ruim O erro quadrático médio é uma maneira de julgar o quão bom é um modelo. Calculamos o erro quadrático médio. O erro montante verdadeiro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados MSE, por exemplo, os resultados são: Erros de Erro e Esquadrão A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência. Um olhar no gráfico abaixo mostra claramente que não devemos fazer isso. A média pesa todas as observações passadas igualmente. Em resumo, afirmamos que a média ou média simples de todas as observações passadas é apenas uma estimativa útil para a previsão quando não há tendências. Se houver tendências, use diferentes estimativas que levem em consideração a tendência. A média pesa igualmente todas as observações passadas. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra frac suma esquerda (fração direita) x1 esquerda (fração direita) x2,. , Esquerda (fração direita) xn. O (a esquerda (fratura direita)) são os pesos e, claro, somam para 1.
No comments:
Post a Comment